
How we improved AI inference on
macOS Podman containers

June 5, 2025 Kevin Pouget

Related topics: Containers, Developer Tools, Virtualization

Related products: Podman Desktop, Red Hat AI, Red Hat OpenShift AI

Share:    

Containers are technologies that allow the packaging and isolation of
applications, along with their entire runtime environment. This eases the
transition between environments (dev, test, production), but also helps
enforce security policies with regards to the network access, file access,
etc. In the world of AI, tools like Podman Desktop AI Lab and RamaLama
rely on Podman containers to let users run large language models (LLM)
locally, while Red Hat OpenShift AI runs them at scale on OpenShift
Kubernetes clusters.

However, containers are Linux, and although they can run in different
Linux distributions, they cannot run without a Linux kernel. The Podman
solution to this challenge is (lightweight) virtual machines (VMs). A VM,
launched by Podman machine, creates a virtual environment inside the
macOS system, where a Linux environment runs and waits to create
containers on demand. The macOS network and the home file system are
passed to the VM, so that the virtualization layer is mostly transparent for
the user.

Challenges of GPU access in virtual machines
When discussing AI, the question of performance is critical. And because
performance gains in AI processing are largely due to GPU offloading, the
question of GPU access within a VM is inextricably linked to performance.

 Table of contents: 

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

2 of 13 10/20/25, 1:42 PM

https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/virtualization/all
https://developers.redhat.com/topics/virtualization/all
https://developers.redhat.com/products/podman-desktop/overview
https://developers.redhat.com/products/podman-desktop/overview
https://developers.redhat.com/products/podman-desktop/overview
https://developers.redhat.com/products/podman-desktop/overview
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/taxonomy/term/37288
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://podman-desktop.io/docs/ai-lab
https://podman-desktop.io/docs/ai-lab
https://github.com/containers/ramalama?tab=readme-ov-file#ramalama
https://github.com/containers/ramalama?tab=readme-ov-file#ramalama
https://developers.redhat.com/products/red-hat-openshift-ai/overview
https://developers.redhat.com/products/red-hat-openshift-ai/overview

question of GPU access within a VM is inextricably linked to performance.
With hardware-assisted virtualization, VMs are able to run natively on the
host processor, allowing for near-native performance.

However, it is more complex to offload computations to physical GPUs, as
they are not exposed to the VM directly. Indeed, an original goal of the
virtual machine is to isolate the virtual system from the physical one;
therefore, we must find a way to break this isolation and give the VM
access to the physical GPU. There are various ways to do this:

• Full device passthrough. This technique requires a logical
disconnection of the device from the host system (macOS) and
passing the relevant memory mappings to the guest filesystem, so
that the VM can access the device memory registers directly, as
when running bare-metal. In the case of the GPU of a user
workstation, this technique is impossible to follow as the host
system relies on the GPU device to control the screen.

• Hardware-assisted device passthrough. This technique is similar
to full device passthrough, except that the device has been
designed with virtualization in mind, exposing multiple memory-
mapped control interfaces. This allows the host system to remain in
control of the main interface, while the VM can receive a secondary
interface. This technique is impossible to follow on Apple Silicon as
the hardware does not offer such secondary control interfaces.

• Virtual device emulation. This technique requires the hypervisor to
expose a virtual device to the VM, with the same memory-mapped
interface as a physical device. This way, the guest can load the
actual driver of the physical device and transparently use its
software stack. This technique is impossible to follow as the Apple
Silicon drivers and software stack isn’t available on Linux. Besides,
the implementation of the virtual-device to physical-device bridge
would not be feasible either.

• Paravirtualized device. This class of techniques involves a
cooperation between the hypervisor and the guest system. The
hypervisor exposes virtual devices with no direct hardware counter-
part, and the guest loads virtualization-aware drivers and libraries.

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

3 of 13 10/20/25, 1:42 PM

This guest-host communication channel is used to offer the VM
services that are implemented in the host system. This technique is
used to share files between the two systems, but also give network
access, share the desktop screen, enable copy-and-paste, etc. The
technique can also be used to access hardware accelerators such as
GPU by forwarding the compute requests and responses between
the two systems.

Device paravirtualization is what has been implemented in the Podman
Machine/ libkrun compute stack to benefit from GPU acceleration in
the virtual machine. We describe this stack in the next section.

Running container GPU acceleration on
macOS
Running GPU-accelerated containers on macOS involves a rather
complex stack. Let us have a look at it.

1. At the top of the stack, the user runs Podman Desktop or
RamaLama, the user interface applications.

2. Below it, the user-interface applications rely on Podman machine to
create the lightweight virtual machine with the right settings, so that
the VM has access to the network and user home directory, and
exposes the Podman remote control interface.

3. The virtual machine is managed by krunkit and libkrun, a lightweight
virtual machine manager (VMM) based on Apple’s low-level
Hypervisor Framework.

4. libkrun exposes a virtio-gpu virtual device that the guest
system can control with the Virtio-GPU Linux driver.

5. In the guest system, the Vulkan-virtio library of the MESA project
implements the frontend of the API forwarding mechanism. The
MESA project is an open source implementation of OpenGL, Vulkan
and other graphics APIs. The MESA library implements the Vulkan
API, and sends the Vulkan API calls via the Venus protocol through a
guest-host shared memory page. The shared memory page has

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

4 of 13 10/20/25, 1:42 PM

https://virtio-fs.gitlab.io/
https://virtio-fs.gitlab.io/
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.redhat.com/en/blog/introduction-virtio-networking-and-vhost-net
https://www.spice-space.org/features.html
https://www.spice-space.org/features.html
https://github.com/containers/krunkit
https://github.com/containers/krunkit
https://github.com/containers/libkrun
https://github.com/containers/libkrun
https://sinrega.org/2024-03-06-enabling-containers-gpu-macOS/
https://sinrega.org/2024-03-06-enabling-containers-gpu-macOS/
https://sinrega.org/2024-03-06-enabling-containers-gpu-macOS/
https://sinrega.org/2024-03-06-enabling-containers-gpu-macOS/
https://developer.apple.com/documentation/hypervisor
https://developer.apple.com/documentation/hypervisor
https://www.qemu.org/docs/master/system/devices/virtio-gpu.html
https://www.qemu.org/docs/master/system/devices/virtio-gpu.html
https://docs.mesa3d.org/drivers/venus.html#virtio-gpu
https://docs.mesa3d.org/drivers/venus.html#virtio-gpu
https://www.mesa3d.org/
https://www.mesa3d.org/
https://docs.mesa3d.org/drivers/venus.html#virtio-gpu
https://docs.mesa3d.org/drivers/venus.html#virtio-gpu
https://www.collabora.com/news-and-blog/blog/2022/10/19/a-look-at-vulkan-extensions-in-venus/
https://www.collabora.com/news-and-blog/blog/2022/10/19/a-look-at-vulkan-extensions-in-venus/

been provided by the hypervisor, via the virtio-gpu virtual
device. This shared memory communication link is the one used for
the data exchanges during the inference queries (data path), as
opposed to the guest-kernel <> hypervisor link, only used for
passing small-size parameters.

6. In the host system, the virglrenderer of the MESA project
implements the backend helper of the API forwarding mechanism. It
receives the Venus messages sent by the frontend, and calls the
Vulkan library accordingly.

7. The MoltenVK Chronos project implements the Vulkan API on
macOS, and translates the API calls to the Apple Metal/MPS GPU
acceleration libraries.

8. Finally, the Apple Metal/MPS GPU acceleration libraries control the
physical GPU and drive computation acceleration offloading.

Now that we have seen the layers of the GPU acceleration stack, we need
to add the cherry on top of it, without which the stack wouldn’t be
exercised: the AI inference engine. In Podman Desktop and RamaLama,
llama.cpp is the engine that operates the AI model and it runs in a
container. It is in charge of loading the model weights in the GPU, and
performs the AI inference queries. llama.cpp and its ggml-vulkan
backend puts in motion the full GPU acceleration stack described above
to offer an API endpoint to the user.

Figure 1 shows an overview of the macOS GPU acceleration stack.

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

5 of 13 10/20/25, 1:42 PM

https://gitlab.freedesktop.org/virgl/virglrenderer
https://gitlab.freedesktop.org/virgl/virglrenderer
https://github.com/KhronosGroup/MoltenVK
https://github.com/KhronosGroup/MoltenVK
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/metal/
https://developer.apple.com/metal/
https://developer.apple.com/documentation/metalperformanceshaders
https://developer.apple.com/documentation/metalperformanceshaders
https://github.com/ggml-org/llama.cpp
https://github.com/ggml-org/llama.cpp

Figure 1: Overview of the GPU computing virtualization stack on macOS.

Improvement of the macOS container GPU
computing stack performance
The performance of the macOS container GPU computing stack has
greatly improved in recent times, thanks to the introduction of the Vulkan
API forwarding in libkrun , and the improvements of the ggml-
vulkan backend of llama.cpp .

Figure 2 depicts this evolution. In this test, we used RamaLama to launch
an inference server, but the core improvements really come from
libkrun and llama.cpp .

Figure 2: Comparison on the inference throughput (in token/s, higher is better) for
different RamaLama versions and back ends (running inside a virtualized Linux
container).

Here are the takeaways:

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

6 of 13 10/20/25, 1:42 PM

• In RamaLama v0.7.0 (ggml-cpu) , we explicitly disabled the
use of the GPU acceleration in the container, to reproduce the
performance available before libkrun GPU acceleration.

• The inference throughput was 0.52 tokens per second.

• In RamaLama v0.7.0 (ggml-kompute) , RamaLama runs with
a llama.cpp image based on the ggml-kompute back end.

• The inference throughput was 6.97 tokens per second.

• This is 13x better than without the GPU acceleration.

• In RamaLama v0.9.0 (ggml-vulkan) , RamaLama runs with a
llama.cpp image based on the ggml-vulkan back end.

• The inference throughput is 20.84 tokens per seconds.

• This is 2.99x better than with the llama.cpp/ ggml-
kompute image.

The combination of the libkrun GPU acceleration and the
llama.cpp / vulkan improvements give an overall 40x improvement

of the previous macOS container GPU computing performance.

Comparison of the container performance and
native performance
Now, let us have a look at the performance comparison between the
container and native execution.

Figure 3 shows the comparison of the RamaLama performance (running
inside a VM container) against the native llama.cpp performance,
with the ggml-metal and ggml-vulkan back end.

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

7 of 13 10/20/25, 1:42 PM

Figure 3: Comparison on the inference throughput (in token/s, higher is better) for
llama.cpp running on macOS with the Metal and Vulkan backends, and RamaLama
running inside a Linux virtualized container.

In this plot, we see the following interesting comparisons:

• RamaLama v0.9.0 (ggml-vulkan) and llama.cpp
(ggml-vulkan on macOS) are on par, which is a great result.
This indicates that libkrun Vulkan API forwarding has minimal
performance overhead. It is great, because it means that the GPU
computation can pass the VM isolation without inducing any
significant performance overhead. This low overhead can be
explained by multiple factors:

• The GPU computing API has a coarse granularity, meaning that
the API forwarding mechanism is sparsely involved.

• The GPU computing kernel execution time is orders of
magnitude higher than the share-memory communication
overhead.

• llama.cpp (ggml-vulkan on macOS) performs at 77% of
llama.cpp (ggml-metal on macOS). This means that, when running
natively, the llama.cpp ggml-vulkan backend performs
slower than the llama.cpp ggml-metal back end. This
difference can also be explained by multiple factors:

• The MoltenVK Vulkan library operates on top of the Apple Metal
API, so the Vulkan kernels have to be transpiled to Metal kernels.

• The MoltenVK Vulkan library does not support the coop matrix
feature (see this presentation from the Vulkanised 2025
developer conference).

To complete the performance evaluation, let us have a look at the

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

8 of 13 10/20/25, 1:42 PM

https://vulkan.org/user/pages/09.events/vulkanised-2025/T47-Jeff-Bolz-NVIDIA.pdf
https://vulkan.org/user/pages/09.events/vulkanised-2025/T47-Jeff-Bolz-NVIDIA.pdf

To complete the performance evaluation, let us have a look at the
inference performance for various model sizes: 1b , 3b , 8b and
13b . See Figure 4.

Figure 4: Comparison on the inference throughput (in token/s, higher is better) for
llama.cpp running on macOS and RamaLama, with different AI model sizes.

We can see that the overall throughput varies significantly, according to
the model size. This is expected, as the number of computations to
perform increases when the number of weights in the model increases.
But what is interesting to observe here is that the performance gap
between the native Metal execution and the Vulkan back end remains
stable:

• between 75% and 77% of the Metal performance for llama-cpp
ggml-vulkan on macOS.

• between 74% and 80% of the Metal performance for RamaLama
v0.9.0 on Podman containers.

In the last section, after the information about the system under test and
the test harness, we detail our current and future steps to stabilize the
overall stack, open it to new workload, and investigate how to further
improve the performance.

Information about the system under test and the test
harness

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

9 of 13 10/20/25, 1:42 PM

harness

Here's a breakdown of our system setup and test tools:

• The inference server is:

• RamaLama 0.7.0 and 0.9.0

• llama.cpp b5581(2025-06-03)

• krunkit 0.1.4

• The inference server is running in this system:

• Apple MacBook M4 Pro, 48GB

• macOS 15.5, Darwin 24.5.0

• Unless otherwise specified, the model used is llama3.1:8b.

• For the multi-model test, the models are llama3.2:1b, llama3.2:3b,
llama3.1:8b, and llama2:13b.

• The load generator is openshift-psap/llm-load-test.

• The metric shown in the plots above is the overall throughput, which
includes the time-to-first token and the time-per-output-token.

• The test harness is openshift-psap/topsail mac_ai project.

• The tests have been executed under the control of TOPSAIL CI
automation, in a transparent, reviewable and reproducible fashion.
The tests artifacts are available at the following addresses:

• Test 1

• RamaLama v0.7.0, ggml-kompute backend

• RamaLama v0.7.0, ggml-cpu backend

• Test 2

• RamaLama v0.9.0, ggml-vulkan backend

• Test 3

• llama.cpp native, ggml-metal backend

• llama.cpp native, ggml-vulkan backend

• RamaLama v0.9.0, ggml-vulkan backend

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

10 of 13 10/20/25, 1:42 PM

https://ollama.com/library/llama3.1:8b
https://ollama.com/library/llama3.1:8b
https://ollama.com/library/llama3.2:1b
https://ollama.com/library/llama3.2:1b
https://ollama.com/library/llama3.2:3b
https://ollama.com/library/llama3.2:3b
https://ollama.com/library/llama3.1:8b
https://ollama.com/library/llama3.1:8b
https://ollama.com/library/llama2:13b
https://ollama.com/library/llama2:13b
https://github.com/openshift-psap/llm-load-test
https://github.com/openshift-psap/llm-load-test
https://github.com/openshift-psap/topsail/
https://github.com/openshift-psap/topsail/
https://github.com/openshift-psap/topsail/tree/main/projects/mac_ai
https://github.com/openshift-psap/topsail/tree/main/projects/mac_ai
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/741/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1907791257179000832/artifacts/jump-ci/005-test/artifacts/test-artifacts/001__plots/report_01_report:_llm-load-test_results.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/741/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1907791257179000832/artifacts/jump-ci/005-test/artifacts/test-artifacts/001__plots/report_01_report:_llm-load-test_results.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930165268990922752/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930165268990922752/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930172995259600896/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930172995259600896/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930181528529145856/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930181528529145856/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html

• Test 4

• llama.cpp native, ggml-metal backend

• llama.cpp native, ggml-vulkan backend

• RamaLama v0.9.0, ggml-vulkan backend

• llama3.2:1b , llama3.2:3b , llama3.1:8b and
llama2:13b from ollama library

• The plots above have been manually generated based on the CI
test artifacts (only to improve the naming and readability).

Ongoing and future work
As you can see from the performance measurements, AI inference on
macOS containers got a speedup of 40x thanks to the introduction of
Vulkan GPU acceleration in the libkrun project and the optimization
of the ggml-vulkan back end of llama.cpp inference server. The
main ongoing action on this topic is the upstream integration of the
virtio-gpu shared memory page negotiation in the Linux virtio

driver. Once merged, this will allow the use of Vulkan API forwarding in
libkrun VM from 100% upstream code.

Podman Desktop AI Lab and RamaLama are also continuously improving
with new GPU accelerated features built on top of llama.cpp that will
be directly available to Apple Silicon Mac users.

We are also investigating how to improve the Vulkan GPU acceleration, as
well as how to use API forwarding in other environments to enable new AI
workloads in macOS containers.

And on the performance evaluation side, we will integrate the
performance test harness in a continuous performance testing
environment, to ensure that the macOS containers GPU acceleration
performance do not degrade when switching to new releases of the
compute stack components.

Last updated: June 10, 2025

How we improved AI inference on macOS Podman container... https://developers.redhat.com/articles/2025/06/05/how-we-i...

11 of 13 10/20/25, 1:42 PM

https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930181528529145856/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/761/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci/1930181528529145856/artifacts/jump-ci/005-test/artifacts/test-artifacts/reports_index.html
https://ollama.com/library
https://ollama.com/library
https://lore.kernel.org/all/20250214-virtio-shm-page-size-v2-0-aa1619e6908b@redhat.com/
https://lore.kernel.org/all/20250214-virtio-shm-page-size-v2-0-aa1619e6908b@redhat.com/

